1. General site operations

- Accessible and restricted areas plan for Phase II. Done
- Guards on duty mandatory for keeping track of people during B operation Done
- Improve self sufficiency at Point 5.

2. Infrastructure, cooling, shielding, network

- EB LV crates need to be fed in parallel, not in series.
- New cooling manifolds have to be designed.
- Eletta Flowmeters calibrate for flow Done
- Shielding is necessary for network star point cabinets. Done
- Improve RPC HV PS supply shielding Done

3. Closing and Opening CMS heavy elements

- Survey and calculate remaining shimming & adjustment for UXC Done
- Need careful monitoring of YE1 tolerances for closures and openings, and procedure, weld in the inner ring dowel pins and understand the effect on the proximity closing jacks. Done
- Establish procedures for ready to close; ready for field, ready to open
- Dowel pins to be welded Done

4. Magnet operation

- Check magnet DCCT on dummy load, shielding and DCCT operation needs review
- Check sensitivity of the fringe field on the heads for the DCCTs underway; to check the readout card.
- Check control sequence of cryogenics during the slow discharge.
- Add simple and reliable source of current measurement

5. Field Mapping, Fringe Field

- Maximum field in the electronic racks is around 180 mT at the crack between YE1 and YR0
- Steel rack doors in UXC should be replaced by aluminium
- estimate of shielding effect of pillar wall to be made, resultant field in USC near pillar wall may be larger than anticipated. who is doing this?

6. DSS Detector Safety System

• Dependence of the DSS on the network

- Define a procedure of modification to the alarm action matrix.
- Repeat of the magnet MCS screen
- DSS screen to be more intuitive
- Written documentation of the DSS alarms has to be improved. Partially Done

Trigger

- integration of HCAL m.i.p. triggers via the RCT,
- integration test of (GMT + GT)
- test "muon overlap" triggers of DT and CSC systems at the Track-Finder level
- Trigger Supervisor software (TS) to configure and control the trigger systems, and
- Test of the TTC resync procedure.

8. Central DAQ

- More online running in Filter (raw2digi, reco and DQM) ongoing
- Address delays in making event files available offline and remote. ongoing
- Switching from local global; out-of-sync
- Need well defined 'ground' state
- Need on call experts (H/W + S/W) available from subdet and central DAQ.
- DAQ shifts scheme to have a person taking whole week in a row is good for continuity
- Global Trigger necessary for phase II
- Writing data to disk to be reviewed; there are occasional conflicts between writing data and copying to CASTOR;

9. **DCS**

- CMF like functionality is indispensable for setting up big clusters of PCs.
- Need a DCS overview panel well visible in the counting room.
- Implement PVSSII access control
- Alarm handling and visualization
- Implement automatic notification (email, SMS, etc.) service
- Move DCS PCs to CMS private network (postponed)

10. **DQM**

- In sync with the CMSSW version used by global DAQ, but needed "patches" Done
- On-line DQM in the Filter Farm to be tested
- DQM running on-line in the FF should be tried out.
- Detectors must comply with general rules that will allow to keep taking data even if there are problems in their system
- Tests should be done with multiple clients (in number and type, GUI and Web Interface) around the world connected at the same time.
- DQM and EVD should run on a dedicated or quasi-dedicated PC
- DT to be included in global DQM application
- Systematically store the DQM snapshots (root files).
- Communication in both directions o2o to be established

11. Remote Analysis Capability

At CERN Meyrin

• slow data transfer out of SX5,

At ROC

- Data transfer was absolutely critical; improved communication is desirable.
- Currently the transfer mechanism between Tier 0 and Tier 1 does not allow the assignment of priorities. This could cause a conflict between MTCC phase II and CSA data transfer.
- New root version was introduced in offline CMSSW version 0_8_0_pre4, it caused a backward incompatibility with the 0_7_0.
- For 'CPT-shifters' at the Meyrin site, the absence of a nice place to sit Done 3rd Floor b40
- In general the CMSSW software (unpacking, DQM, reconstruction, event display) was found to be impossible to use 'out-of-the-box'. A lot of expert help was needed to get subsystems to work.
- Easy access/links to the correct database (external files) from the analysis programs needed to do online or offline monitoring correctly.

13. Sub systems:

a. HCAL

- Need to optimize CSC triggers to better point towards interaction point (HE)
- Working on code to select events with DT or CSC tracks pointing to HCAL
- LED data study for alignment of HO HPDs
- No central DCS system running on HCAL, need to install for Phase2
- DQM for HCAL running on-line, need to fine-tune the plots
- Measure scintillator brightening.
- RCT and DAQ issues
- Source management procedure

b. MUONS

i. Alignment

- the alignment components stick out protection under study
- Position recording devices like BCAMs need to be investigated for closing / Opening Procedures which need to be well established and warnings be issued if tolerances are not being respected.
- The non-recovery of initial Link Disk position after magnet was off investigated.
- Laser adjustments are the major concern. Pre-adjustment on YE1 of the AlignRing and LinkDisk looks mandatory (with access to both sides of YE1). And needs good verticalization of the disk and SU measurements. Procedure?
- Endcap SLMs lines shims on the sensors compensate well the yoke bending but not the laser bending with field on. Laser lines can not complete the full ray path, for B on and off, as foreseen. Is something to be done?

ii. DT

- Detailed investigation of the DT-CSC relative synchronisation in the overlap region.
- Interplay with databases (condition, configuration DB) to retrieve/store configuration settings and MCs conditions.
- Exercise DCS.
- DQM integration
 - Lorentz angle studies

The following goals have been set:

iii. CSC

- HV scan to verify LCT efficiency and Gas GainsHV scan to verify CLCT efficiency
- trigger studies (running various trigger primitives and trackfinder configurations)
- Long continuous runs (>1M events)

iv. RPC

- Install Link board system in Sect 11 W+2 Done
 - Gas equalization on W+2 W+1 Done
 - Dedicated run with DT for efficiency, timing studies, requiring Global DAQ.
 - Complete trigger chain:
 - $LB \to TB \to HSB \to FSB \to GMT$
 - **Normal DAQ:** 4 RMB mezzanines + DCC
 - DCC should allow the RPC to run closer to the final configuration